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PREFACKE

This appendix is intended to serve both as a source of immediately
applicable methodology and as a guide to the underlying gas dynamic i
theory, Those interested more in applying the methodology than in der- |
ivations and comparisons of calculated and observed results will find the
following parts of this appendix of particular importance:

Location . Description

Section IIA The simplest and fastest method of estimating
average pressure in a room as a function of
time; adequate for many purposes.

Section IIB3 Two different methods for a step-by-step, hand

L calculation providing average room pressure as
well as dynamic pressure in the opening, valid
for all flows through a single opening into a
single room when the outside pressure is known
as a function of time. Either method may be
used but Method F is simpler for inflow,
Method D for outflow; they may be combined in
use,

Section 1IC Formulas for geometrical extent of the jet
created inside the room by inflowing air and
for dynamic pressure distribution within it.

{ » , Table E-3 A compﬁter program to calculate average pres-
sure within a single room and dynamic pressure

} . : in as many as eight openings as functions of

| ' time when a single room has openings into sev-
eral different pressure fields (e.g., a room
with front, rear, and side windows struck by
a blast on the front wall),

Section IVB A step~-by-step hand calculation of average
room pressure and dynamic pressure in each
opening during filling of a single room
through one or two openings into separate
pressure fields.
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When using the methodologics noted above, the user may find the mean~
ings of symbols under Notation at the end of this appendix, Subscripts
not explained there refer to physical spaces, i.e., subscript 1 indicatcs
quantity is measured outside the room; other odd-numbered subscripts refer

to interior of rooms and even-numbered subscripts refer to connecting ducts
or openings.
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Appendix E

ROOM FILLING FROM AIR BLAST
By J. R. Rempel

I Introduction

When a blast wave strikes a building, even should the structure with-
stand the initial impact, the resulting inflow of air through windows and
other openings can be critical in determining the safety of any people
sheltered by the structure and in determining the response of the struc-
ture itself to the blast impact., Although the physical laws obeyed by
moving gases are well known and the course of the inflow in filling the
building can in principle be calculated completely, any such calculation
is far too lengthy to be practical for most purposes; fortunately, sim-
plifications can be introduced which greatly shorten the labor of estimate
ing effects of the blast inside the building and which give results in
good to fair agreement with experiments done with small models., In gen-
eral, the effect of the inflow is to provide a stream of fast moving air
in the shelter space which may (1) endanger shelterees by hurling them
against large relatively fixed objects or by hurling objects against them, .
and (2) provide a back pressure on the inner surfaces of structure walls
countering the blast pressures on their outer surfaces.

Several factors enter into the calculation: the pressure outside
each wall with openings and the time each opening becomes available, the
area occupied by each opening and the volume of each room, the number of
connected rooms and the area of each connection, and the ambient pressure
and temperature in the building before the blast strikes, Perhaps the first
of these to consider is what proportion of the wall exposed to the blast
is open. If this fraction is greater than one half, the shock front lead=-
ing the blast wave will pass into the building only slightly weakened and
subsequent inside pressure should be estimated from a knowledge of. shock
position and the laws of shock reflection, Methods appropriate to this
case are only touched upon here. On the other hand, should the fraction
be less than one tenth, clearly the filling is not a shock process and
the methods treated here are quite pertinent, Unfortunately, in many
applications the fraction of open area will lie between these two ex-
tremes and, in these cases after the room filling calculation has been
completed according to the methods suggested here, some thought must be
given independently to the influence of the entering shock front,
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~ When the source of the blast wave is an explosion and the location of
the building in relation to the point of cexplosion is known or postulated,
"rroe field" pressure histories at the building site can be found in stan=

2 . - 3
dard references}’ *1%3nd from these historics well known methodst?®

aroe

available to derive approximate histories on the outside of the walls of ‘
the building. Briefly, these methods account for a short-lived pcak of <:
pressure created.by the impact of the front upon the wall ncarest the ex-

plosion, the relatively fast erosion of this high pressure to a level which

is the sum of the free field brossuro plus a drag pressure on the wall

due to the high winds behind the blast front. This quasi-~steady pressure

then decays slowly to zero as the blast wave moves onward past the struc-—

ture.

ordinary window glass breaks rather quickly, i.e,, within 8 ms (milli-
scconds) or less when struck by blast overpressure of 1 psi (pound per
square inch) or more .* Doors may withstand outside pressure longer, or
even altogether, The time an opening becomes available with respect to
the first impact of the blast upon the building becomes, then, the break-
ing time plus the time required by the wave to travel from the wall near-
est the explosion to the opening. If the opening is in the wall nearest
ithe explosion, travel time is of coursc zero. Strictly, the decay of the
blast wave overpressurce which occurs during this time must be taken into
account, but when the blast arises from a nuclear cxplosion of yiecld
greater than a few kt (kilotons) this decay is slight and negligible; that
is, a single "free field" pressure history for all openings may be assumed.

It should be emphasized that the methods given here are simplified
and their use can lead only to estimates, They are intended to provide: @
(1) calculations applicable to hand computation by those untrained in gas
dynamics and (2) approximate results useful until more careful calcula-
tions are made. Only in the case of the simplest structural configura- -
tions and the simplest pressure history shapes can limits of error be sug-
gested for these results, Such cases will be the subject of the discus=-
sion immediately below.

II Classical Nuclear Blast Wave Incident upon a Single Room

A. Estimation of Inside Pressure History

The "classical" blast wave from nuclear explosions consists of a steep
pressure front or rise followed by a long-lasting decay phase during which .
the pressure in the wave falls to zero., It is accompanied by high winds
giving rise to dynamic pressure against objects in the stream. Striking
a wall at normal or near normal incidence, it creates a high pressure

*,bReferences ére listed at the end of this Appendix,
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zone at the surface, which however is rapidly eroded as relief waves move
across the wall face from the edges, As a first approximation in the cal-
culation of room filling, this reflected phase can usually be neglected,
Following the decay of the high reflected pressure, the quasi-steady pres-
sure (free field plus dynamic) remains against the wall for hundreds of
milliseconds to several seconds, depending on explosive yield, Generally
filling is complete before this quasi-steady pressure has fallen more than
a few percent; hence, as a first approximation the outside pressure may
often be considered constant and, if only a single wall with opening is
exposed to the blast, the time AT (in milliseconds) to complete filling
may be computed as the ratio B4A» Where V is room volume in cubic feet and
A is area of opening in square feet.,! The average room pfessure at any
time t during the filling process is then simply the fraction of the quasi-
steady outside pressure given by the ratio ZT' For th¢ purposes of this
calculation, areas of several openings in the same wall should be added
together to form the quantity A X

In case there are two or more walls with openings exposed to the blast
and each such wall sustains a different outside pressure history (as will
happen, for‘example, when the drag coefficient is different for two walls),
the calculation is more complicated but first estimates of filling time
and average inside préssure during filling may be found by adding interior
pressures calculated as if each wall alone were exposed, As an example,
consider a room of volume 30'x10'x10' = 3000 f@a in which the front wall
has total openings of 36 ft= and side walls have total openings of
60 ft2. The ratios g% for the front and side walls are 41.7 and 25 ft,
respectively., If the quasi-steady overpressure on the front wall is 10 psig
(pounds per square inch - gauge) and on the side wall 8 psig and if further
the side wall opening becomes available 10 ms after the first blast im-
pact, then the averége inside pressure will be approximately as shown in’
Figure E-1 by the heavy line OAFG, 1In other words the room will fill in
approximately 24 ms, Lines OAC and DE represent filling rates through
front and side walls,respectively; and ordinates of OAC and DE are added
to form the line OAFG. Of course after the average inside pressure ex-
ceeds 8 psi there will be outflow through the side wall; to allow for

"this loss the line FG has been placed between the outside pressure at

the side wall (8 psig) and the outside pressure at the front wall (10 psig)
The ordinate at FG is closer to 8 psig than to 10 psig beocause the area

of the opening in the side wall is greater than that in the Tront wall,

The line FG is intended to represent the final quasi-cquilibrium proessure

in the room,

* The experimental Justification of most of the procedures described in
this section is demonstrated later in Figures E-4, E=5, E-6 and E-8.

+ Empirical relationship, dimensionally inconsistent. Meanings of
symbols as used in this Appendix are défined as introduced and under
"Notation" at end of Appendix.
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These simple calculations do not apply when the reflected pressure
lasts an appreciable length of time, or when the wave is non-classical
such as it would be were a precursor present., Under these conditions the
more detailed Tethods set forth below must be followed.

B. General Case

Justification for use of the simple methods noted above rests upon
experience with a step-by-step calculation and comparison of its results
with experiments. This calculation applies the principles of steady isen-
tropic flow in ducts in successive, small time intervals. Conditions com=
puted for the end of one time step pbecome initial conditions for the next
step. Conservation of energy, momentum and mass along with the assumption
that the air behaves as a perfect gas with constant specific heats deter-
mine the thermodynamic variables, prcssﬁre, temperature and density, as
well as the wind speed through the opening. Unique expressions lending
themselves to simple calculation cannot be given for the laws of comnscrva=
tion of energy and momentum, and alternate forms leading to somewhat dif-
ferent results will be stated. A1l such expressions rely upon certain
approximations to the conservation laws and these approximations usually
introduce errofis into the results in comparison with which the approxima-
tions arising in the assumptions of isentropy, perfect gas behavior and

constant specific heats are negligible.
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1. Inflow. Figure E-2 shows the idecalized rooﬁ with a single open-

ing struck hcad-on by a blast wave. Three regions are noted: the outside
(D, the doorway(D\vhich serves as a duct connecting the outside with the
room (). In order to make the calculations tractable, uniformity of con-
ditions in each of the two regions D and () and over the cross scction of

region @ is assumed; furthermore, during each small time interval At, steady -

conditions arc assumed in each region., During the aforementioned quasi-
steady state outside the building these assumptions are probably valid for
region(D but they clearly introduce error if the reflection or diffraction
phase lasts an appreciable time, for during that episode relief waves are
moving into the region from the edges of the building as well as from the
doorway itself causing rap&d fluctuations in wind speed and pressure,
(Some account is taken of changes in pressure during the diffraction epi-
sode by the standard techniques of estimating outside pressure,) Similar
remarks can be made concerning regions()znul() but if we are content to
deal with "average" pressure and speed in those two regions, we may apply
the step-by-step isentropic analysis, However, our present methods do

not provide for any apportionment of gaseous energy in region(:)between
streaming kinetic energy and internal energy; for simplicity of calcula-
tion it will be treated as entirely internal at all times, which will
cause overestimation of pressure and neglect of winds within the chamber,
In evaluating the wind ihreat, the speed and dynamic pressure in the
duct()xnust be regarded as the upper’ bounds on wind speed and dynamic
pressure in region(). Later, methods will be given for estimating change
in dynamic pressure as the wind moves into the room,
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In writing the conservation equations, two views can be taken of con=-
ditions in region(D. Oon the one hand pressure, density and wind speed may
be those of the free field behind the blast front or, on the other hand,
the air upstream of the opening may be treated as stagnate at a pressure
above free field either by the amount of the reflected pressure or by the
amount of the product of the drag coefficient and dynamic pressure. Pro-
vided drag coefficients are known, the second view is more simply applied,
especially when the blast front does not meet the wall head-on. In what
follows,the pressure, Py, and density, py, in region(D will be those of
stagnate air outside the wall. The work done in moving a mass element
Am in region@ through a small distance Ax toward region@ is:

P A dx =D AV = — -
L AL 9x =P Y bm

where A1 is the cross sectional area, and AV is the volume occupied by
Am in regionCD. The mass element carries with it the internal energy it

had in region(d, i.e.,

P
i, 1., bm,
-1

where vy is the ratio of specific heat at constant pressure to the specific
heat at constant volume. (The perfect gas equation of state is assumed;

" see Ref, 5,) 1f the flow into the room is steady, energy conservation
‘requires that the same total energy, specifically, the sum

P
1 .P1.Am+P1.Am= y _..1 . m
-1 - 1
Y Py Py A P1

be given up within region()(hudng the same time interval. Furthermore
mass conservation asserts that the mass element moving through region(}
toward region@ equal Am. The work done in region@ in pressing the mass

element toward region(® is

Pa

and the internal energy in the element is

E~16




1 . P2 . A
y=-1 "

Pa

where the subscript(} denotes conditions in region(). Since the air is
flowing into the room, however, the element in()zﬂso carries (streaming)
kinetic energy of amount ’

u 2
m
2 A

N -

where u designates particle or material speed. Thus, if conditions are
not changing too fast, we can write (cancelling out the factor Am):

P P
__y_l._l=_1;._?.+§u2 (1)
Y = Py Y- P, 2

To apply conservation of linear momentum we consider a control sur-
face, shown dashed in Figure E-3. Neglecting gravitational forces, the
x-component of the force integrated over this surface must equal the rate
of flow of the x-component of momentum out of the volume plus the rate of
increase of x-momentum within the volume.® Neglecting frictional and
viscous effects, the only force on the surface is the thermodynamic pres=-

Pl LA AL

l |
| | )
l | Z ~
| | 4 ~
- L~
| I 7] -
| N Z
O _® ® 2
== -
| - s -
1% ’ -
| ot .
A Z
1 I oo
I e
Ve
e e e e e _J?

FIGURE E-3 FIRST CONTROL SURFACE

E-17




‘opening.) Thus, carrying out the in

sure, exerted normal to the surface in an inward direcction. Across the

throat of the duct this pressure is taken to be Ps; everywhere elsc on

the surface it is approximately Pjp. (Around the entrance to the duct 5
presgure on he wall will be lesz than Pp, but the mass flow rate turns %‘
0t net to e highly sensitive Lo corrections made for this effect and,

in order to simplify calculation, uniform pressurc Py will Le asszuned,

The mass speed ug however would be reduced by this corrcction.) During

_the quasi~-steady episode momentum within the surface will change only
“slowly and we assume that it is in fact constant during each successive

(This assumption is clearly false during the shock

time increment At.
flected shock

diffraction episode due to the presence of fast moving re
fronts within the surface, During the quasi-steady episode the assump-

tion neglects the relief wave spreading into the stagnate air outside the
tegration over the surface, we find

X P cos O da = (Pl-— P2) A2

n the inward normal to the surface

In this integral © is the angle betwee
lement of area on the control

and the positive x-direction and da is an e

surface. The total momentum in the positive x=-direction passing through

the surface is simply
2 A
Pa Y3 “2

Hence, momentum conservation reduces to

2 2)

Finally we note that even in the presence of moderately strong or weak
shocks the isentropic equation of state of a perfect gas is accurate enough

for this approximate calculation; hence

2 @

(See Ref. 7).

Given P1 and p1, Eqs. (1), (2), and (3) may be solved for Py, p2»

and uz.* The result can be written as:

% TFor diatomic gases like air, y=1.4; see Ref. 8.
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2y 2 .2,y 1 N €O
vy + 1 Pl P1 v+ 1
‘ Py 1
which is independent of p_. Ify=—, A= Y- -
1 P1 v+ 1

and B = ;j§LI,Eq; (4) can be put in the form

<=

By '=y+ A (5)

When A and B have the values stated above, Eq. (5) has two solutions,
one of which is y = 1 and the other is y = 0.1912, The second solution
is the only one of interest here and will be designated yo.

To continue the calculation p, must be known, This value can be
found from the Rankine-Hugoniot relations and knowledge of the strength
and angle of incidence of the original shock front (Ref., 1,2), or it can,
with enough accuracy for incident shock strengths less than 15 psi, be
computed from ambient conditions using the isentropic equation of state,
i.e.,

Py =° 5 (6)

where P and p are ambient pressure and density, respectively. With pl
known, air density and pressure in the opening can be calculated from:

= 1/ 7
Py p1 yo Y (7)
P = P : 8
2 yo 1 . 8)
from which wind speed becomes:
' 1
P - o P 1 -

1~ Pl 2 1( yo) 2

0 = = (9
p1 o]

The mass flow into the room (3) can be written

E~19
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L

= A At
Py Uy Agh

1 1

‘5’ .
P (1 = Y
[ L ¢ y) v, pl-] A, bt (10)

If Vg is the volume of the room and the prime is used to denote conditiions
in the room at the beginning of time step At, then average density in the

fl

'room'p3 at the end of At can be written as:

-— ' nar—
Py = Pyt . (11)

To find pressure in the room at the end of the time step we assume that
all the energy lost in region <:> appears as an increase of internal en-
ergy of the gas in the room, i.e.,

P
.-l—- M .-—1. . - .....__...1 . - ,>
vy -1 pl bm vy -1 P3 P3 v3

Yy P '
1
p = —t B, p 12) -
3 p \'/ 3
1 3

At any time air temperature T3 within the room can be calculated from
‘the perfect gas law:
P
3
T, = ——

3 R
p3

_where R is the gas constant® for air in the appropriate units (e.g., in

metric units R = 0,3028 joule/goc). The quantity Tg can reach high values
as a result of the compression existing behind the shock and within the
room; however, if airflow to the outside (outflow) is maintained, the
relaxation of préssure following the passage of the front will return
room gas temperatures to safe levels before injury to occupants is likely.
Only the long lasting increase in room temperature resulting from fires
will normally be a threat to the shelterees.
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Conditions existing in the chamber at the beginning of a time step
arce used in the forcgoing calculations only in Jigs. (11) and (12) and do
not influence duct parameters becausce transients have bcen omitted from

consideration, Transient phenomena, for example, determine the direcection
’ ?

of flow; that ié,_if Py > P, flow is inward as discussecd above, but
otherwise flow is outward, Repeated neglect of signals originating from
the room leads to an accumulation of error in the calculation of average
bressure as can be seen from comparisons between calculation as above and
measurement shown in Figures E-4, E~5, and E-6., The experiments® were
carried out in a 24-inch shock tube; the configuration of each model
chamber is shown in an inset in the figure; and the foregoing calcula-
tion produces Curve F of the figures, The curves in Figures K-5 and

E-G labelled “extcrnal'history (A)" are measurements in the frece stream
by means of a pitot tube oriented with respect to the stream to conform
with the orientation of the opening in the model room;'bxternal,history”
in Figure E-4 ig side-on overpressurc in the unobstructed shock tube.®
In each case the calculation initially yields pressure in agreement with
observation but eventually shows room pressure during filling in excess
of meéasurement, although the maximum difference is 20% or less, Magni-
tude of At for these calculations was one-quarter the transit time of a
sound signal across the room,
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Choice of the size of At is somewhat arbitrary except that (1) values
much greater than sound transit time will give a false idea of the degree
of irregularity in the fill process and (2) enough steps should be taken
to make it possible for the influence of variations in P1 to be shown in
the results. The length of the bar labelled "T" inFigures E-4, E-5, and
E-6 represents the sound transit time across the longest room dimension.

The "existence of significant theoretical errors in our treatment of
flow into a room by quasi-steady analysis is clearly revealed by consider-
ing the single control surface formed by superposition of that shown in
Figure E-3 and that indicated with dashed lines in Figure E-7., Such a
surface coincides with the inner surfaces of the room and passage and
extends into quiescent air outside. Under our hypotheses there is no
flow through this surface anywhere and no change of momentum within it,

"yet the surface integral of the x-component of pressure over the bound-
- aries does not vanish.
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This absurdity can be avoided in one or both of two ways. A term may

be added to the right side of Eq. (2) to account for the changing flow
pattern within the control surface shown in Figure E-~3 or a term may be € ]
added to the left side of Eq. (2) to account for the possible nonuniform-
ity of pressure over the boundaries of the surface., As the room begins
to fill, a rarefaction wave moves back into the high pressure gas outside
the first doorway bringing more and more gas into motion toward the open-
ing. In other words, the neglect of the rate of change with time of the
momentum within the control surface outside the room may be at least one
cause of the contradiction noted above., Any attempt to calculate a cor-
rection for this effect would certainly add to the complexity of these
simplified procedures; furthermore, the degree of agreement between ob-
servations and theory of Method F (shown in Figures E-4, E-5, and E-6)
suggests that the added effort to account for the rarefaction wave may
not be needed to achieve the desired degree of accuracy.

10,11,12,17

Some writers™ *"T!T7? use the equation
P = P’ 13
9 3 (13)

instead of Eq. (2). Justlflcatlon for Eq. (13) is based on analogy wzth
the treatment of flow 1nto a large chamber steadily being evacuated,
Equation (13) of course provides continual coupling between flow condi-
tions and conditions in the room.

Using Eq. (13) we derive the pressure buildup inside the room in
the following way. Substituting Eq. (3) into Eq. (1), then replacing
P, with’Pé according to Eq. (13) and solving the resulting equation for
u,, we find:

P po L=y 172
u2 = ——zll. -—-]-'- 1 - .I;?'.
=1 Py 1

from which we calculate the mass inflow in tho time increment AOt:

= A At
Am K p2 u2 o
1-.1 1/2
» Pl 1/2 Pé 1/v Pé _ /Y
= = — 1-{ =) A, Ot 4
0 vy-1 o P P 2 (14)

1 1 1

Whenever Eq. (13) is employed, empirical corrections must be made to re=
duce the calculated inflow rate or the calculation will not yield realis-
tic values for room pressure in small experimental models; the simplest
correction is the discharge coei’ficient,13 represented by the factor K
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in Eq. (14). Investigators at the 11U Boscarch lusetine’ T have tound

it necessary to use the value K =0.7 to reconcile cotpuiod pressure rises
in small models with those measured; Curves D in Figurces B=4 and k-3 have
been produced by a calculation based on Eq. (13), with K =0,7.during
inflow and K =1.00 during outflow.

The value of the discharge cocfficient is usually discussed in con-
nection with boundary layer thickness and the Reynolds numbcr.13 It
should be noted therefore that the relatively good agreement between
the observed room pressures and Curves D was obtained in very small
models and not in full-sized rooms. To providec an estimate of the in-
fluence of the value of K on calculated pressure rise, Curve G, based
on the value K=1.00 during both outflow and inflow, has been entered
in Figure E-4. In the flow into. full-sized rooms, presumably, the Rey=
nolds number will be larger and the discharge coefficient more nearly
equal to 1.00 than in the flow into small models.

et e

Finally, the pressure increment during the jnterval Ot is found by
substitution of Eq. (14) into Eq. (12):

p 1% /P i P’ 1‘1‘]':;‘ A At

: 2 2 3 \Y 3 Y 2

b _pr =Ky P D= = R (15)
3 3 1ly-1 o P/ P v

1 1 1 3

Melicharll’lz omits both the factors X and vy before the right-hand
side of Eq. (15), which is equivalent pumerically to making K=0.7 and
v=1.4. He attempts to justify this procedure on theoretical grounds
unconnected with boundary layer theory.12 Some of his numerical results
are shown as Curves C in Figures E-4, E-5, E-6, and E-8. Melichar em=
ploys a value of At equal to the transit time of sound across the room,

Pursuing the analogy between room filling and steady flow into a
chamber held at constant pressure, we expect to encounter the phenomenon
of choking as the ratio of room pressure to outside pressure drops below
the critical value.'® For a given set of reservoir conditions, i.e., for
each pair of values Py and Py, the eritical pressure ratio is that for
which isentropic flow into the room achieves the maximum mass rate and
for which the flow speed equals local sound speed. Therefore, to find
this critical ratio, we can differentiate Eq. (14) with respect to Pé/Pl,
set the result equal to zero and solve for (Pé/Pl)érit.’ which yields;

P’ a
3 2\
P +1
1 /crit. A
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For every value of Pé below the critical valuc as given above, mass flow

. into the room will be that obtained by substituting the critical ratio

into Eq. (14), i.e.:

X+1 1

o y-1 12
Au =K p | — ¢
(A hoked Y Py Ti\yn Ay B

Because the mass flow rate is limited in this way jndependently of the
value of P§ it is called "choked' flow. TFlow obeying Eq. (14) is called
"unchoked' or "subsonic.' Numerically, when y=1.4 the critical ratio
equals 0.5283; thus, assuming ambient pressure is 14,7 psiaf‘the critical
outside pressure 18

_14.7 _ 57.83 psia or 13.13 psi T
0.5283 " psia .13 psie

Peak overpressure in none of the experiments reported in Figures E-4,
E-5, and E-6 rose above 13.13 psig; hence, according to the foregoing
theory, choked flow should not have occurred. :

A similar degree of comparison between calculation and measurement
is found in the results shown in Figure E-8 stemming from a 27 £t3 model
exposed to a large chemical explosion, except that the transient fluctu-
ations associated with the entering shock front arc more easily dis-
cerned in the larger model than-in the small shock tube models, The
parameter values used in the calculations summarized in Figure E-8 were:

Po = 13,58 psia ambient pressure

po = 0,0672 lb/ft3 ambient density

v = 1.4 ratio of specific heats
Ay = 0.821 ft2 area of opening

V3 = 27.0 ft3 volume of model room

“The fraction of the impacted wall area occupied by the opening 1is slightly

less than one-tenth.

From the results shown in Figures E-4, E-5, E-6, and E-8, some esti-

' mate can be made of the validity of the greatly simplified method of com=

puting pressure rise in a filling room set forth in Section IIA. In each
figure, the value of V/2A in feet has been entered. A constant pressure

% Pounds per square inch, absolute.
+ pounds per square inch, gauge.
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P 1=

21Y
=n" | 6
P, =Py 7, _ (16)

ombined to form an equation jdentical

Equations (1), (2), and (16) may be ¢
to Eq. (5) except that now

’ P -
2V Eg_ _l.Y

B = +1 P’
Y pl 3
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But, as before,

I

2
y =— and A =
P, Y + 1

In this form, Equation (5) has two solutions in the range 1 >y > 0
whenever v = 1.4 and

P
s | L
p / >
1 Ps
P p '’
or o > (17)
’
P Y ey
v
X ' : . p] Y- 1
These two solutions merge into a single solution at y = -
v
if P p’
‘ L - (0.0000) -3
Yoo oy
Py Py Y

Furthermore, if y = 1.4, Equation (5) has two solutions but only one in
the range of 0 ¢ ¥ < 1 whenever

Pé P1 Pg
Y 2 Y > (0.9094) xy (18)
Whenever P1 Pé
—_ < (0.9094) % (19)
p, Y p. Y
1 3

no solution to Equation (5) exists.
v o |
Since the quantity Ey is constant along an isentrope and increases
with entropy, when Inequality (17) is true during outflow, specific
entropy outside is greater than or equal to specific entropy within the
room.

The specific entropy (i.e., entropy per unit mass) in the room at
any time during filling can.be formally calculated as follows.

First we note that temperature of air in the room rises during the

whole inflow period, as can be seen by treating Am as a true differential
and writing Equation (12) as:
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From the perfect gas law
P V. =m RT
3 3 3 3

(where ng is the mass of air in the room, and R the gas constant for air)
we write

R T3 m R
_dP3=-—V-—--dm—{- * dT,
3 3
P3 m_R Y P
dP, = == * dm - dr, = . dm
3 3 P1 '3
% P P m_ R
1 _r_23 dm = —S— . dT
V3| P10 P V3 3
or . - T dm = dT '
[le 3] m= g 3 (20)

Clearly, at the start of filling Ty > T3, hence at the start dT3 >0,
Moreover Equation (20) shows that Tg can increase above T, while dm > O
until Ty approaches y Ty. Thus as temperature outside (T;) falls due
to the adiabatic relaxation behind the shock front, inflow and rising
inside temperature continue.

In an isentropic process involving a certain mass of ideal gas the

quantity p is constant; or, taking differentials,
1/Cy = 1)
dp _ 4T _
o —Y’T - T

Rewriting Equation (20) as
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and dividing numerator and denominator by V3 and noting that density

., )
Py = V§ , we find

d dT
o3 3

- T - ’l‘
Pz Y11 743

In other words the process of room filling during the time period t to
t 4+ dt results in a temperature increase dT3 that bears the relation

dT : T =T
3 ) Y 1
(aT

3

‘ TYT -7
3)isentropic Y 3 3

to the temperature increase in an isentropic process providing the same

) dT
density increase, When T, > T 3 > 1
1 3 Ty
3)isentropic

Now the'entropy change dS in a process at constant density is

¢ dT
\%
dsS =

T

where c, is specific heat at constant volume. If we imagine a return to
the isentrope (after an increment of filling) by a process at constant
density or volume, the specific entropy change within the room resulting
from the filling increment becomes

C

-V i
ds, = — dT_ - (dT
S3 T3 [ 3 ¢ B)isentropicJ
c T -
o ds = — ! 1" % ar (21)
o7 T -T 3
.8 3 Y i 7

" which on substitution of the quantity dT4 from Iq. (20) becomes

c Y

ds. = — (T
3 T3m3 1

- TS)dm (22)

~ Therefore, during inflow (i.e., when dm > 0) specific entropy within the

room will increase until T3 = T; or Py = Pi, whichever occurs first.

E~-33




Because of the passage of the shock front, air outside has greater
than ambient specific entropy. Hence, initially before inflow beginsg

HD-<IP—:U
\
© , so]
w < jw

but Eq. (22) shows that the inflow process, according to the theory ap-
plied here, creates entropy within the room. Should enough entropy be

S0 created, Inequality (19) may eventually be satisfied and solution of
the outflow equations presented here may be impossible. The rise in spe=-
cific entropy within the room as a result of inflow is:

P =p
3 1T -7
1 3 dm
A83 =cy —T—n-l——a—t-dt
v t=0 3 3

where t = time and Ty, T3, and M3 are functions of time., From Eq. (20)
we know that Tg rises asymptotically toward YT; until Pj =Pg; thus T3
may be larger than Ty. For a given function Pl(t) [which determines
T1(t), T3(t), and m3(t)], the maximum specific entropy within the room
will be reached when

=T
T3 1
If we assume that at this time inflow is still under way, then Q‘}
P P
1 > 3
which implies,when v > 1, that
1-% 1-%
p P .
1 73
. 1 1_
or A y -1 < ¥-1 j
' P
1 3

Now from the equality of the temperatures at this time, the perfect gas
law implies :

SR
|
w‘o ,w"v

Multiplying both sides by the last inequality above, we find
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.be used for the outflow phase, such as that proposed by Melichar

<j
e’
<l

P 3
— < =
b P
or

p p
13
A

1 3

Hence, in general, the possibility may not be ruled out that Inequality
(19) will be satisfied. Whether the outflow equations as presented heére
have a solution will depend on the nature of the function P (t). 1If ocut-
flow is to be calculated, then to provide an initial disparity between
specific entropy outside and inside, the inflow period must be treated
using the initial density behind the shock front and computed from the
Hugoniot'relation:l

.. (y+1)P, + (y=1)P
10~ Po (y=1)P _+ (y+1)P (23)

‘Subsequent outside air densitieé may be calculated from the adiabatic

law:
1
Pl Y
= — 24
Pl =Pl P (24)
lo

)

In Eqs. (23) and (24), Pi, and Py, refer to the air density and ab-
solute pressure immediately behind the shock front. When peak pressure
at an opening is reached by reflection of an incident shock wave from a
wall, Eq. (24) is not correct regardless of whether P, is taken as peak

' incident absolute pressure or peak reflected absolute pressure, but the

error in using Eq. (24) is small. We will arbitrarily consider pq, and
Py, as representing conditions behind the free-field shock front. Use
of Egs. (23) and (24) may make it possible to satisfy the reverse of
Inequality (19). : ‘

Should such still not be possible, other calculational methods must
11,12
or

17  These methods equate duct

that rcported by IIT Research Institute.
pressure Po with outside pressure during outflow; the IIT investigators
then fit observed outflow pressure data by choosing values for the dis-
charge coefficient and for the ratio of inside to outside pressure at

the time of flow reversal.
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3. Outline of Hand Calculation. 1In constructing from the forcgoing
equations a calculational scheme for estimating the paramcters of [low -
into and out of a single room with a singlec opening we start with a series
of values of P;, one for each time step. These may be obtained by linecar
interpolation from a given table of outside pressure as a function of time
and each value should pertain to the center of the time interval.  The
size of the time interval, At, itsclf is arbitrary, but it should be no
greater than the quantity T; ﬁrcsumably up to a limit, greater accuracy
results from smaller values of At., The size of At may be changed during
‘the calculation when the rate of change of flow paramcters changes, We
also need values for ambient pressure P, and density Poe

Two methods of calculation are shown below., The first is that used
to produce Curves F in Figures E~4, E-5, E-6, and E~8, namely, that based
on Eqs. (1), (2) and (3) for inflow or Eqs. (1), (2) and (24) for outflow,
and in the outline below it is called Method F. This method has the ad-
vantage of great simplicity and of not requiring knowledge of empirical
constants; however, as will be explained later, values of wind speed and
dynamic pressure computed by it are subject to doubt in some cases and
for that reason a method given by IIT Research Institute is included also,
The latter method is responsible for Curves D in the figures and, there-
fore, in the outline below it is called Method D, As noted earlier,
Method D for the unchoked flow case is numerically equivalent to the
‘calculation used by Melichar,t1) 12

Average pressure inside a room and dynamic pressure in the single
opening to an outside reservoir whose pressure variation in time is known
may be calculated as functions of time by the sequential application of
the steps stated below. Each cycle through a series of steps completes
the calculation for one time interval., The first three steps are executed
only during the first cycle; subsequent passes begin with step (4), as in-
dicated in the outline, Step (5) is a branch point to separate sequences
for inflow and outflow, chosen according to a criterion given in step (5).
There are further branches (a) to Method D or F, chosen at the discretion
of the user at each time, and (b) under Method D to choked or unchoked
flow, determined by stated criteria. Throughout the outline, the quantity
Y has been set equal to 1.4.

1 Set P’ =P nd ‘= and t = 0,
(1) set P =P a P3 = P,

2 Compute : 6p + P
() ° p 0 =p lo o

1o .0 P + 6P
lo . o

where P is the absolute pressure immediately behind the
shock frgnt.
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(3) " Choose value of At (see opening paragraph of this Section IIB3).

3:} (4) Determine outside pressure at the current time; i.e., deter-

- mine Py, from the known reservoir pressurec history (préssure

variation with time). During first time interval P1:=P10.

(5) Determine direction of flow; i.e., if P; > P3, flow is inward;
go to step (6). Otherwise flow is outward; go to step (28).

Inflow
r 0,.7143
(6) = Compute _ P1 1
' p, = p. | =
1 lo plo

Branch to selected Method below for step number (7D) (Method D)
or step (7F) (Method F).

Method D (Inflow) .

(7D) 1f P /P < 0.5283 inflow is choked; go to step (8D). Otherwise
inflow is unchoked; go to step (18D).

Choked Inflow

.4 -
2 %_Z 1/2
8D) Om =K|1l.4p_ P (-—-) o A At
(8D) ~ choked {l pl 1\12.4 2
1l/2
= 00,6847 P. T A At
X [pl L ] .
' Using the recommended value*” of X = 0,70 this becomes
| ' 1/2
By ed =O.4793[p1P1F] A, Ot
9 ‘= p’
(9D) P2 P3
0,7143
P2
10D)’ = —
(10D)" p, = P, Pl]

* The factor F will often be necessary for consistency of units. For
" example, if u, is to be in ft/sec and P; is in 1b/1n2 and p; in lb/ft
then F = 32,X 144, = 4,608,
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m
choked

(11p) u = T o K
2= Bt AP, ‘ (J
P
12D p—P'+14—-1-5‘5“-
(12D) 3 3 * v
: 1 '3

1f desired, dynamic pressure qp at the‘opening may be found

from:
pu 2
1 2 2
13 == —
(13D) a9, =3 T §
14D ‘=
(14D)  pg = Py

5D) ‘=
(15D) P3 P3

(16D)  Advance time by amount At and return to step (4).

Unchoked Inflow

(1sb) P

= P’ )
2 3 .
0.7143 ()
P2
19 =p_ | =
(19D) P, =Pyl D
1
. P, P
2 2 .
(200) u, =7 N b
Py P2
(21D An =p,u,A_ Ot
( ) unchoked Palagfy
(22p) P, =P, + 1.4 P1 [unchoked
(23D)‘ ~ o0 4 Amunchoked
i p3 b p3 V3

(24D)V 1f desired, dynamic pressure, dg, in the opening may be
found from:

2
1 Iz
49 =% P2 F
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(25D) P3‘= P,
) (26D) Py = Pg

(27D)  Advance time by amount At and return to step (4).

Method F.(Inflow)

= 0, 2
(7F). P, 1912 P, |
. .. 20.7143
, Py
8F = — = 0.306
(8F) o, pl_Pl] 70,
2 B3 P ‘ P
(9F) u, =7 2o -—Z]F =2.637[——1-]F
L.pl Po Pl
(10F) fm_=u_ p_A_AOt = 0,498 (P F)l/2 A Ot
3° 72 7272 - 1°1 2
. P Am
3
(11F) P, =P; + 1.4 L -
1 V3
! ' Am
(12F) o, = pl 4 =
3 3 v,

(13F) I1f desired, the dynamic pressure, Ays in the doorway may
‘be calculated:
2

1 Uy
(14F) q, ==p_ — = 0.4044 P
2 2 2 F 1l
(15F) 93 = p3
6 =P
(16F) P3 3

(17F) Advance time by amount At and return to step 4).

outflow

(28) Branch to selected Method below for step (29D) (Method D)
: or step (29F) (Method F). '
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fothod D (Outflow)

(29D) If Pl/Pé < 0.5283, outflow is choked; go to step (30D).
Otherwise outflow 1s unchoked; go to step (39D).

Choked Outflow

1/2 .
(30D) = -0,6847 K [péP;Fﬂ / AzAt

Am
choked

j “For K = 1.0 this pecomes®”

1/2
N } = =0,684 ‘' P’T A
“chokod 847 [p3 P3 T] AZ v

(31p) P, =P

2 1
0.7143
Py
32D =0’ |—
(32D) P, = P4
L1
u ‘ o
| hol
@) v, ek
| 2 P2
. Am ’
: ked
(34p) P, =Py + 1.4 °$° ed 3
3 P3
Am
35 = p’ —_—
(35D) P, =Pg v,

"(36D) P, =P
(3TD) PL=0D

(38D) Advance time by‘émount At and return to step. (4)

Unchoked Outflow
39 =P
(39D) P, 1

(40D) p, =P

P P
2 2

(41D) u =7[—i-——l§‘
2 p2

)




42D A - - At
¢ ) "unchoked p2 Yy Az
«"“‘7‘)\ '
/ P
- (43D) P, =P’ 4+ 1.4 —2nchoked 3
3 3 . v 57
3 3
Amunch ked
o
44D = 0’
( ) Py = 0g t =y
3
45D P’ =P
(45D) 5 =Ps
46D)  p’ =
(46D) Py = P3

(47D)  Advance time by amount At and return to step (4).

Method F (Outflow)

o’ [pr 707143
7 313
(29F) B = -6- 3— -I-)—
' 1L°1
0.7143 _
(30F) Solve By =y + A for y.
(31F) P, =yP
‘ P, 0.7143
32F = p’| =
(32r) o, 93{]?,
(33¢) Am = - ot
(33r) o u, A2
P
: 1 An
(34F) P, =P’ + 1.4 — —
3 _ v
1 3
(35F = pl + L
Py = P3 vV,

(36F) P. =P
37 /=
(37F) Py = Pq

(38F) Advance time by amount 4t and return to step 4).
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etical differences petween the two methods outlined above

are striking. At the present time there is not enough cxporimcntal cvi-
e from full-sized rooms to permit a clear judgmcnt between them. €.
the f£illing time is long comparcd

The theoTr

denc
1f the room fills slowly, that 18,

with the transit time of sound across the room, then the analogy under-

g Method D should be good; put even 8O there 18 doubt about the cor-

sficient, K. The possible ijnfluence of ¥

m the differ-

lyin
rect value of the discharge €o€
on the calculated room pressure is large, a8 can be seen fro
ence between curves D and G 1in Figure E-4. If the fi1ling is rapid, per-

haps Method F should be preferred. However, as will be seen in the fol-

lowing paragraphs, this Method can lead to anomalous values of wind gpeed

through the opening.

c. Wind Speed and Dynamic Pressure (Jet Effect)

of interest are wind speed and dynamic pres-—
methods yield values of these parameters only
es at the doorway may serve as

fOther flow parameters
‘ sure. 7The present gimple
| in the doorway, but, ordinarily, valu
upper bounds for the whole room.

of wind speed and dynamic pressures in

er than observations of room pressure.
ral calcu-

Unfortunately, meaSurements
shock—filling rooms are even few
The aifferences among the predictions of speed among the seve
lational methods are 1arge, put the values of dynamicC pressure are often
in fair agreement. For estimates of the acceleration of objects in the

stream, the dynamic pressure is the only pertinent parameter.

puring both inflow and outflow wind speed may be calculated from .
Eq. (9 and, if the jsentropic assumption 18 made, Ed. (6). Dynamic

pressure, Ao is customarily defined as
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Using Eq. (9) this can be ‘written:

1
Q=7 P (l-yo) . (25)

Because of the neglect of transient effects, Egqs. (9) and (25) do not re- -
flect the influence of changes in the room pressure, and values calculated
from them may be unrealistic. Peak speeds found from Eq. (9) for the ex-
periments reported  in Figures E-4, E-5, E-6, and E-8 are supersonic, i.e,,
above local sound speed in the doorway.

Because of its use of the choking analogy Method D never calculates

supersonic speeds; but it does negiect transient shock fronts which could
alter the flow substantially in fast filling rooms.

Table E—l,contains the several calculated values of peak speed and
dynamic pressure corresponding to each of the experiments reported in
Figures E-4, E-5, E-6, and E~-8. The table suggests that use of Method F
may result in overestimate of that important criterion for damage potential,
dynamic pressure. As noted above, because signals from the filling room
into the outside reservoir are neglected, Method F in addition to over-
estimating peak dynamic pressure may overestimate the time-average dynamic
pressure in the doorway.

There are no direct observations of wind speed in the opening to com-
pare with calculations. Coulter,9 however, had reported (1) measurements
of the acceleration of an %—inch diameter nylon ball placed in the doorway
of a small model struck head-on by a weak shock wave, and (2) measurements
of the motion of smoke columns inside these models during shock filling.,
With the help of acceleration coefficients derived (theoretically and ex-
perimentally) by Bowen and others'® we can compute motion of the nylon
sphere from Eq. (25)., Coulter allowed a shock front of overpressure equal
to 4.89 psig to strike a reflecting plate in which an entrance 1 x 4 inches
was cut. Since the chamber behind the opening had a volume to opening area
ratio (V/A) equal to 1,33, filling was essentially complete in 1,33/2 =
0.667 ms, during which time there was little or no decay of the incident
wave, If we assume ambient pressure equal to 14,7 psi, reflection at
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Table E-1

PEAK VALUES OF OTHER FLOW PARAMETERS

Method | cx F G -
Experiment qz(pSi) uz(Ips) q2 u2 q2 » u2
Fig. E4 7.98 1045. 9.93 1650. 8.02 985,
Fig. E-5 10.2 1180. . 11.2 1680. 10.2  1110.
Fig. E-¢ 7.79 972. 9.74 1640. 7.80 972.

Fig. E-8 4.08 747, 7.37 1634.

¥ Correct adiabatic law has been substituted for the inverted form
appearing in Melichar's FORAST code.??!

normal incidence of a 4.89 psi shock produces a reflected overpressure
equal to 11.1 psi.* Hence the value of Py in Eq. (25) becomes 11.1 + 14.7 =
25.8 psi, and C

1
g = = 25.8 (1 - 0.1 -
q2 > X (1 0.1912) €{)
= 10,5 psi
” .
or q2 = 48100 1b/sec ft

. ' . 1" 11 . .
In this expression 1lb is a unit of mass.

A still object in a stream of moving air is accelerated according to
the formula

— =qq ' (26)

where ¢ is an acceleration coefficient characteristic of the object and
g is the dynamic pressure as defined here. Eq. (26) continues to hold
for the moving object as long as its speed is small compared to air speed.
Bowen and otherst® suggest a value of o = 0.138 £t2/1b for a 1/8 inch
diameter steel sphere, Since ¢ is inversely proportional to mass, the
corresponding value for a nylon sphere of the same size is approximately
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7.87 x 0,138 = 1.09 ftz/lb (specific gravity of iron equals 7,87).
acceleration of the nylon sphere should be, according to Eq. (26),

Hence

g% = 1,09 X 48100 = 52200 ft/soc2

and the final speed of the sphere when filling is complete 667 usec after
impact becomes:

o -6
v = 52200 X 667 x 10. = 34.8 ft/sec

0.14 inch, Coulter measured terminal speed after 700" usec as 29.8 fi/sec,
" Observed displacement in this same timc was approximately 0.10 inch, which
means the ball did not move far from the center of the doorway during the

period of observation and was subjected to only slightly attenuated peak
dynamic pressure,

: 1 2 =12
and the displacement is s = 7 X 52200 X (667) X 10 = 0.0116 ft =

Corresponding to Eq. (25),Method D produces the following equation
for the calculation of dynamic pressure in the opening:

1 ,
o =T P3’>Y' P3 (27)
2 2 1|\P, P

The value of q in Eq. (27) is not constant in time even when P, does not
change appreciably. For simplicity, we may assume P3' varies linearly from
14.7 psia to Pl over the filling time 0.667 ms. Again, we take Py = 25.8
psia and find the following variation of dynamic pressure with time:

time (ms) = O 0.2 0.4 0.6 0.667
P,’ (psia) 14.7 18.0 21.35 24.7 25.8
(psi) 8.97  6.80 4.15 1.08 0.00

The tabulatlon shows a nearly linear variation of q2 Integrating Eq._(ZG)
approx1mate1y, we find the final value of speed to be:
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£ 2 2

o t 1 1b -3 in ft
v = 1.09 —— .E X 8.97 T3 0.667 X 10 scc 144 —% 32 2 o
| 1b in £t scc {
t
=15.0"f—“‘
sec

which is about half the observed value. The relatively better agreement
with experiment furnished by Method F than by Method D may reflect the
fact that the shock filling in this case is "fast.”

’/

‘However, it would seem{that any relatively good agreement between
calculated and observed acceleration in this example was fortuitous, since
Coulter's photographs of events in the chamber make it clear that the
diffraction episode very nearly coincided with the calculated £illing
time, that is, air flow during the period of observation was more 2 shock
related process than a case of quasi-steady adiabatic flow. Some support
for this view comes from the second set of wind observations reported by
Coulter: motion of smoke in the same kind of chamber used for measure-=
ments of the motion of the nylon ball. Most of Coulter's observed values
of wind speed and dynamic pressﬁre from smoke motion are one or two
orders of magnitude lower than comparable values calculated by the methods
presented here. ‘However, Coulter could not by this smoke method measure
speeds in the doorway and, in fact, as filling went on his observations
were restricted to regions farther and farther from the core of the flow. 63

-4 ’ .
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To provide a useful appraisal of the effects of inflowing air within
an open shelter, ‘the attenuation of wind speed and the spreading of the

s -~ - -—a? e W - - T - -~ -~ P L - - *,
JeT as the iniluw moves through the enitry desyer Lnto the enclosure moso

be accounted for. As in our dLSCTiUeIO of the average precssure ri

within the room, reliance will again be placed on a quasi-static approach
with account taken of the transient cpisode before the establishment of
adiabatic flow by means of a semiempirical correction,

The steady jet described by Abramovich®® is illustrated in Figure z-%%
where air is considered to be flowing from a reservoir at high pressure on
_the left through the aperture into the recgion of low pressure (i.e., the
interior of the shelter) on the right. 1In the theory, the entry aperture
| , may be a slit of essentially infinite length and width by Or it may be a
circular opening of diameter b,. Although the description of the jet is
different for the slit than for the circle, the difference is not impor-
tant here, Since most actual openings will be somewhere between the two,
it will be assumed that any actual opening has been approximated by a
slit or by a circle and only one set of formulas will be given. As shown
in Figure E-9A, inflowing air generally fans out into the receiving res-
ervoir, slowing down after passing through a conical or wedge-shaped

"core." Air speed is constant everywhere within the core.

Abramovich characterizes the jet by three parameters: dimension
of the opening bo "; air speed in the axial direction at the initial cross
section ugy ; and ratio O between temperature in the core and that in the
receiving reservoir (i.e., the shelter space). The flow is driven by a
pressure difference between the two reservoirs, but it appears to be a
fact that pressure within the usual subsonic jet itself is uniform and
| equal to that in the receiving reservoir. In other words, pressure
i equilibrium is quickly established between the jet and the air already
in the reservoir, In this case, where the air in the high pressure res-
ervoir has been shock compressed from a state identical to that origi-
nally in the low pressure reservoir, the existence of pressure equilib-
rium between the inflowing air and interior air requires that density
and temperature in the jet nearly equal density and temperature in the
room, The slight difference is attributable to the fact that outside
air has passed through the shock front and acquired entropy compared
with the unshocked or only weakly shocked air within the room, Such
difference is entirely negllglble for present purposes Thus, in this
discussion, the parameter © equals 1.

Furthermore, if pressure is uniform within the jet, the flux of
axial momentum must be the same at each cross section of the jet, that
is: '

£E-47.1




REGION IN WHICH

TRANSITION

REGION OF SIMILIAR

THE CORE EXISTS
(initial region)

\VELOClTY PROFILES —

REGION

VELOCITY PROFILES
{main region)

\

Source: Ref 20

FIGURE E-9A SCHEMATIC OF JET FLOW
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2
1 = : ' ‘
flux pSqu2 (28)

By making usc of a control surface passing through the aporfurc (shown
by the dashed line in Figure E-QB), the valuec of up in Lquation 28 can be

calculated, since by conservation of momentum

flux = P. -P )A
( 1 3) 2
Thus,
1/2
P - P /
1 3
Y T p (29)
3
Alternatively, by Equation 2
P P 2 2
1" P = Pl = 29
. - 5
or A P1 q2 + P2

wﬁich can be substituted for Py in Equation 29 to yield:

2
1/ 2q. - P 1/2
2. '3
u = > —_— (30)
o P Pq

This may be a useful lower bound since P_. is generally small, Both
Equations 29 and 30 show that u, falls as the room fills.
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Expcrimental obscrvations<* in model rooms and detailed numerical
simulations®%s?% of shock room f£illing hoth demonstrate that in roor
filling streams dynamic pressure roaches values about twice Lhose siven
by Equation 31, Thug, instond of Jaguations 209 and 01 4 fobtiming s
recommended on ompiricnl yroundis

2
2(p, - P_) 1/
1 3
uo = (32)
p3
= P -P 3
qcore 1 3 <3 )
In most cases the relation

.=A 4 "
qcore q2 (3 )

has been found empirically to be approximately true at the beginning of
the jet pefiod. The use of Equation 34 throughout the filling period

appears from experimental evidence to be highly conservative, since in
addition to the spatial attenuation, observations reveal a fall in core

dynamic pressure with time during the equalization of inside and outside
pressures,

The reason for the failure of Equations 29 and 31 is not understood;
however, with further empirical corrections, steady-state jet theory

may be applied with fair success to describe the room filling airstream
quantitatively,

The first departure from straightforward steady jet behavior is
observed during the period immediately after shock arrival at the open-
ing, when air motion in the neighborhood of the opening is governed by
the laws of shock waves, At that time, particle speed is relatively slow
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but as the diffracted waves rcverberate in the opening, conditions for
jet-like flow are established. This build-up of flow through the open-
ing lasts a length of time

t = — (35)‘

where ¢ is the speed of sound, If this time interval is long enough to

be important, it is recommended that dynamic pressure in the opening be
treated as varying llnearly in time during to from ¢, = 0 at shock arrival
{(t = 0) to qo = P; - P3 at the end of the diffraction phase (t = to).
During the time t <ty , the variation in Pg with time cannot be calcu-
lated since the filling law during diffraction at the opening is extremely
compllcated If substantial filling is thought to take place during the
period t <t, , the inflow rate at any time step may be found from the
formula: ‘

A = u A
M3 P3listy

1/2

AZ{Zqopé} (36)

The jet is not established simultaneously throughout its final
length. An estimate of the time between shock arrival and the appear-
ance of jet-like flow at an interior point i appears to be:

t = — , ' (37)

where {ois the distance from the opening to the point. Again a fair
appraisat of the time variation of dynamic pressure at point 1 during
this preliminary period would seem to be a straight line, beginning at
the moment of shock arrival at point 1,22

If the point i is near a wall blocking flow from the opening, then

dynamic pressure there may never reach a value expected in a fully devel—
oped flow at that distance from the oponlng.
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The fully developed steady subsonic Jet is desgeribeq by the £617 0.
ing three sets of formulas, each set valid in onc of the three
shown in Figure E-9A,

regions
Only air speed in the axial direction is
icant,

1, 1Initial Region, The speed u in the bound
core decreases with increasing distance from the ¢

; ary u = 0 and at the core boundary u = Ug.
‘ right angles to the jet axis and within the

ary layer outside the

At a point in any plane at
boundary layer

u,} . 31‘- [1_n1.5]2f

where T = % » ¥ is the distance from the jet boundary (measurcd in a

direction perpendicular to the jet axis) to any point, and b is the
boundary layer thickness also measured perpendicularly to the axis,
both as shown in Figure E-9A (e.g.,.at the core boundary Yy = b and at

the jet boundary y = 0). The quantity b varies linearly with distance k
from the opening, i.e.,

i

| " b = 0.27x

or, equivalently,

the slope of the outer Jet boundary (where u =
be written ‘

= 0) can

tan ¢ = 0,158 or o = g°

The length of the initial region

(and the length of the core) is approxi-
mately 4.5bg.

Transition Region, Formulas valid for the transition region can be

written, but they are not necessary for present purposes. If desired,
values of quantities in this region may be interpolated between the ini-

tial and main regions, The length of the transition region however may
be required and is approximately 2,.2bg.
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_ Main Region. Here, as in the transition region, there is no core;
y layer, which widens at half angle equal to

the jet is ontirely boundar

o = 12°30°

or slope

= 0.22

®io

where b is now the half width of the Jjet.

um at the jet axis and

air speed is at a maxim
t a perpendicular dis-

In any Cross section,
In between &

falls to zero at the outer boundary.
y <b from the axis

tance
' 1.5,2
w = u(1-7""7)
m
where Uy = speed along the axis and M= % as before, except that ¥ and b
as shown in the main region of the jet

ferent meanings,

<,
==

have slightly dif
sketched in Figure E-9A.
tance from the opening. in-

Speed along the axis Uy declines as dis

creases, i.€.:

6.2 b
~ o
u—-u__.—-———
m ) X
Hence _
. 6.2 b
. . .5 2
uf‘-u-———-o-(l-'ﬂ)
o
or . 2
: 6.2 bo , 5 4
< a4 = a o) (-
core X :

regiding in the ajrstream stems ultimately

e thermodynamic parameters

potential for damage
usly throughout -

Changes in
t felt immediat

Any
from Equation 29,
in that equation are no

the values of th
ely and gimultaneo
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the stream, However, the assumption of instantancous response will fail
to be conservative only after the ond of inflow, i,c,, when Pl = Pg and

L} up as calculated by Equation 29 becomes 0, In fact, the stream cannot
stop abruptly., If the airstream deep within a shelter remains dangerous
as {illing concludes; then a linear decay in dynamic pressure at the in-
terioxr location may be assumed, lasting

R

or, more simply, inertial effects during decay may be accounted for by
neglecting inertial effects during build-up of the stream at the interior
point. '

Obstacles to flow, such as corners or barriers, may be found in a
shelter or may be deliberately designed into the structure. As far as
the main shelter area is concerned, such entry barriers or mazes have
the effect of increasing the length of the diffraction phase. Thus if
the driving pressure is falling rapidly enough, the duration and/or in-
tensity of the airstream flowing into the shelter may be reduced by the
presence of a simple barrier at the entry, as sketched in Figure E-9C.
Increase in the duration of the diffraction phase (i.e., the time inter-

!wb v val to) is a possible explanation for the positive results of Coulter's

o barrier experiments.®* However, Equations 32 and 33 appear to offor the
possibility of baffles that would with a sacrifice of shelter spaco greatly
reduce tho hazard connected with the filling stream., For bxnmplo, a hold-
ing room or foyer is shown in Tigurc E-9D that could conceivably be de-
sipned so that pressure within it during most of tho £il1 period would

be less than that prosent outside the shelter, If such a desipn is pos-
gible, Equation 33 tolls us that the dynamic prossure in the core of the
Jet emerging into the actual sheltier space would be less than it would

‘be without the foyer. The difference betwecen the holding rooms shown in
Figures E-9D and E-9E should be noted. The driving pressure for the jet
flowing into the shelter space of Figure E-OE is essentially the outside
pressure, not that in the holding room. This arrangement benefits only
from the increased delay to . The hazardous jet of Figure E-9D on the
other hand is driven by the pressure in the holding room. If the foyer
volume V and door areas Aq and Ay could be designed to keep the average
pressure in V substantially below Py , then the arrangement would lead

to reduced values of qo after the delay ty has elapsed.

Some of the same considerations may be used in understanding stream
deflection within the shelter space, such as the situation illustrated
in Figure E-9F, where the airstream flows into a corner of the shelter
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and eventually flows out of the corner in a dircction perpendicular to
the direction of inflow, After inflow into the corner develops, there
is a time delay during which static pressure builds up throughout an
increasing volume of stagnant air V. This increasing static pressure
drives the outflow in ever-increasing magnitude. If inflow remains
steady, presumably an equilibrium is achieved such that inflowing mass
matches the mass flowing out.

If temperature equilibrium is also reached, then kinctic cenergy
of inflow must equal the energy of outflow. Thus, the net result after
enough time has passed is a pure deflection of the incoming stream. In
small shelters subjected to megaton nuclear weapon effects, this is the
condition to be expected,.

Behavior of an airstream in the corner illustrated in Figure E-9F
differs from that suggested by Figure E-9D in that the areas A7 and Ap
need not be equal, and temperature equilibrium between the holding room
and shelter space need not be reached while blast pressures against the
structure exist,

III. Multiple Rooms

Although the algebra becomes increasingly cumbersome as rooms are
added, the foregoing principles of calculation can be applied to a series
of connected rooms. For example, two rooms are represented in Figure E-11
for which two control surfaces may be employed. Through the smaller the
momentum flux is due to flow through the first doorway and the resulting
momentum equation may be written as:

2
P -P) = A : 32)
A, ( .2) Py by (

1

=49
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Using the larger control surface we find:

! 2

4 &
P -~D)A + (P ~DP)YA = u’ A K
(v 5 "2 ( 3 a4 Pa s ™y (33)
Method G oemploys the two equalities below during Lfilling;
’
P = P 7

2 3 (1)
‘ ¢

P = P 35,

4 5 (35)

Equations governing flow
can be written as follows:

B
—~_ .1
v-1 p,

o

P
— —Y_.-__2.+_]_'. uz (36)
Y-1 p 2 2 -
2
1
p —
T2\
=P ) (37)

To these two equations one of the two possible pressure relations
represented by Egs. (32), or (34) must be added to form a complete sys-

tem from which P2, u2,
may be calculated.

and pz

for the time interval under consideration

Under Methods F and G, the equations governing flow into the first

of two rooms are identical to those from which the filling of a single
room is computed, Calculation of flow into the second or inner room is

more complicated however.

Because observed pressure buildup in two connected rooms has not

generally followed simple calculations based on an assumption of uniform

pressures over the control surfaces of Figure E-10, provision will be
made in the analysis at the outset for a correction term A. The quan-
tity & will be chosen to reconcile momentum balances based on inner and
outer control surfaces such as those shown in Figures E-3 and E-7, that

is,
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. - A =
(P3 pQ 2+A (p

or,

' .
A = (Pl - ps) A, (38)

Generalizing, we will take the correction terms, O, equal to the pressure
differential across .the duct times the area of the duct, Thus, the cor-
rected Eq. (33) becomes:

2

I'4
P - P = A
(P 4™ Pg

4) A

(39)

puring filling of the second room, there will be an average wind
moviug through the first room iunto the second doorway. If ug is the speed
of this wind and Ag 1is the cross sectional arca of the first room, then,
in view of the quasi-steady state assumption, conservation of energy im=

plies

P P

._x---—:}- +l. uz = 0—4— +.}_ u2 ) (40)
v=1 P 2 3 vy=1 p 2 4
3 4
and conservation of mass implies
A = u, A .
Py U3 %3 Py ¥ e (41)
and the assumption of isentropy leads to
1 .
Pa\Y
p4 = pé(Pl > (42)

3

Egs. (39), (40), (41), and (42) make it possible to compute by Method F
the four unknowns:

p u4j P4 and u

4’ 3
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The resulting solution for Pa can be put in g form simiilar to that ygeq
in computing P2 '

1
2Yp4/Y p4Y1 A% p (2
vei\y ) a2 (B
Y 3 3 Y 3 Py
(43)
1/v72
A P P
c Y10 g 4 4
+11} a P’ P’
Y 3 \ 3 3
P,
3
2 2/ 1472
A P A /p-
A - Y -1 1 - 4 4 24 4
- + 1 A P/ A\ p/ P’
A 3 3 3\ '3 3
' 2
and B = -——:L-
Y + 1
then Eq. (43) can be written as
i/
By Y = y+ A (44)

where in general A = Aly); however, since P4 < Pé and usually A4 << A3,
the dependence of a Ony is weak; i,e,:

Use of Eq, (45) is equivalent to n
first room in Eq. (40)

After the duct bParameters, i.e;, p_, P

9 , u2, P, u4, and, if desired,
u3, have been found from the foregoing €quations, then the new room pres-
sures P3 and P5 and densitieg 93 and p5 are calculated:
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gv)
~

1 2 1
Am J—-'—3;+—u, = = (P_~P%) ' (46)
5 y-1p 2 3 y-1 5 5 o o
3 €
where ‘ Amg = u4 94 A4~At , mass increment in sccond room
P .
——+—=eAm = —— (P_=~P’ —~— (P_-P') .
=10, v-1 P 7P Var 3 (g mPO IV, D)
where Am =Au2-p2 A2 At , mass increment in first room
, 'An15
Ps = 95 + v (48)
5
Am - Am5 - ‘
Ps =Pg ""—v—z‘— : ' (49)

Outflow from both the first and second rooms is treated with similar
basic equations except Eq. (37) is replaced by

P2 1/v
p,=p| = (50) .
2 3\ P, Q/
and Eq. (42) by p \1/y
. ‘ ) 4

" Again, in the computation of outflow parameters in the first doorway
(i.e., Py P2 and u2) Eqs. (32), (36), and {(37) are used as set forth

above when only a single room was considered. For outflow through the

_second doorway, two cases.should be distinguished: (1) there is inflow

through the first doorway and (2) flow through the first doorway is out-
ward. These conditions affect the form of Egqs. (33) and (40). 1In case
(1), u; = 0, and Eq. (40) simplifies to:

-y Py, Py \
VT, Y (52)

but Eq. (33) must contain two correction terms, A_and A_, to account for
excess force against the righthand and lefthand walls, recspectively, of
the first room:
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P -P)A,= A + (P’ =P ) A+A = )

(o

4
Qhere A= (P. -PYA, and A = (P’-DP’ . Thus Egq. (563 oMe s ¢
\ b, ( 1 3) 5 & 5 ( . 3? A4+ Thus Eq (53) becomes:

PS'-P =0 u (54)

Combining Eqs, (51), (52), and (583), we find:

1
By /Y =Yy + A
where P
whe ;. ! (a5
= 57 55
5
4 ,
B "“'?‘J"'Y "“?‘"“)‘ﬁ ("6)
= -1, ’ . .
YRy Py
P!+
-1 3 5 -1
.A.=’Y P =Y (57)
y+1 P5 y+1
In case (2), there is net flow through the first room (i.e., u, £ 0)
Eq. (40) is unchanged but the analog of Eq. (33) is:
- ’ ’ v _ A/ - 2
<?l ‘PS) Ay + (P3 P4) Ag+ B =P, ul Ay (58)
. A = (P! - P! -(P. - POHYA, 59
where . . ( s P3) A, ( 1 3) 5 . (59)

This wvalue of A’ is computed by equating the force tending to drive the
air out of the second room, i.e., (Pé - P4) A4

to the momentum flux stopped in the first room .and the outside reservoir,
i.e,:

P -PYA + (P =P )A + B .
(P = PO AL Py = P Ak B

Solving Egs. (40), (41), (51), and (58), we find again that

By =y + A
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i
where % and B are given by Egs. (55) and (56), but now ’ i
P -DP’ A P’ +0’ , (-
A= Y+l (l-az) 1 3.2 + 320 + azy '
= y-1 P’ A P’ | (60)
5 4 5
A p’
d ' o = ...4'.. __5.. l/Y
an _ =% 0 *Yy (61)
3 3
Substituting Eq. (59) into Eq. (61),
vl { 2 2
A =— l1-« 4+ .
y-1 ¢ ) y (62)
. ' 2 ‘
Since, ordinarily, A3 >> A4, and y< 1, ¢ << 1, from which we conclude:
v+l
A —
v-1 (63)
, An alternative expression for A in case (2) can be found by writing
the excess force on the wall against which the outflow from the second
roqm is directed as the pressure differential across the duct times the
duct area: '
A” = (P’ -P%) A (64) 6'\}'\}5
5 5 3 4
Substituting A; from Eq. (64) for Aé in Eq. (60), we compute for the con-
stant term
p - P’ A
Coy+l 2 1 2 2
A=Y=l a-a|\—— 7 *1? + @y (65)
v-1 P A ,
5 4
for which small & becomes
v+1 Pl ) Pé A2
' A= e — +1
v-1 P’ A . (66)
5 4
One final case remains to be considered, namely, outflow through the
first doorway combined with inflow through the second. Conditions in the
second doorway are computed by solving Eq..(40) with u, = 0, .Eq. (42) and
b _pyA +(P -P)A =p uZ A '
(=P A (PI=P ) Ay =Pty By (67)
E-56 l:)




P
-
y =P’
3
2
B = X
Y+1
: 1 £y Ay
A== — -1 <41
. Y+1 P A
3 4

In summary then we see that in évery case an equation of the form
Byl/Y =Y + A must be solved for'y. This equation is encountered also
in the first doorway if Method F is used. In Table E-2 the meanings of
¥y, A, and B for each case are listed. Since conditions in the first door-
way under Method F are independent of conditions inside, the definitions
for the first duct appear separately,

In Figure E-11 results of a calculation carried out by Method F for
two rooms are compared with measurement©® of average pressure in the first
room. The two rooms consisted of two small modcls such as thosce illug-
trated in Tigures E=5 and -6 placed back to back with a connecting door
exactly like the outside door. The cxperiment was performed in a shock
tube in which the wave struck the first doorway hecad-on, Also in Figure
E-11 appears the result of a calculation treating the whole volume of the
two model rooms as if it were in a single room, In Figure E-12 measured
and calculated results for the sccond room in the model appecar. At least
in this one example, all three calculated pressurc rises, i,e,, in the
first room, in the second room, and in the whole volume of both rooms
treated as a single room, are quite similar and there appears to be no
advantage in using the complicated procedures for computing the fill of
two connected rooms.

The calculated histories shown in Figures 11 and 12 have not been
carried beyond the time of equilibrium between inside and outside pres-
sures, - : - "

Figure E-13 shows pressure history calculated by Method D ignoring
the wall between_rooms. For this calculation the discharge coefficient

- has been set equal to 0.7 on inflow and 1.0 for outflow.~

* CAVFIL, a FORTRAN program written at IIT Research Institute, was
used to make the computation
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Table E-2

1
MEANINGS OF ¥, A, AND B IN THE EQUATION BY /N = y+A
WHEN METHOD F IS USED

First doorway

Inflow
P
_ 2
y T p
1
2
I
' + 1
-1
R B
v+ 1
outflow
P
. 2
y P
3 -
4
P
2y p3 1
B = 10, P,
Y+ Pty
1 Pl
R
Y : 3
Second doorway
inflow Both Doors
P
3 4
vy = B/
3
2.
5 oo
v+ 1
A 2
-1 4 1/v
NN P gl INCRYD
v+ 1 A3 _
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Table E-2 (concludgd)
f '(}}‘ Outflow Both Doors
' P
B 4
= 57
S
1 7
P
B 2y p53
= .-—.-—7
+1p'p
Y+ 1 2 :
= 1l - 1- v
; A‘ Y - 1 [ o ( })]
A /
(Y—Ap_ly
. 3 '3
; or alternatively
/
P -P A
: Y+ 1 2, | 1 "3 "2 21
: A = (l-a)—_ﬁ-—"—-&-l +Qy
; v -1 P A J
é 5 4
i

oD p
i 4
: y = 5’
? 5
i ‘o
; p
a B 2y . p5. 3
- N 1o, P/
| Y + .93 5
) -1
A = h
Y+ 1

P
;- 4
= 7
P3
B__“_El_.,
v+ 1
" A
-1 1 2
A=,:\Y(+1 1—3-7-—1'A—+1
3 4
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The outside pressure, labeled "input history" in Figures E-11, E-]12
; s 3 s

and E-13, was measured as the stagnation Pressure on the front fares o8
the model simultanoously with the measurcments of

Interfor pressures,
The short-lived reflected wave docs not appear in

these external histories,

IV Openings into Different Pressure Fields

a single room through several openings, each of which is exposed to a

separate outside pressure history, This situation will arise, for example,
when a nuclear blast wave sweeps over 2 building, striking one of the -four
walls head-on, two side-on and exposing the fourth to the wake of the wave,

. Head-on impact pro-
duces a strong but brief reflected wave followed by a quasi-steady wind
and an associated strong drag force superimposed upon the static pressure,
When impact is not head-on, only the drag and static pressures are ordin-
arily taken into account, ReTerencves 1 nyiq 3 voniniy Hiatinealiia iyl
of eabimnling oulaide IWessire i Lliese vases,

e hni]‘u'

A, Computer Program

A computer program has been written in time-share FORTRAN to calcu~
late average pressure as a function of time inside an opeén room exposed
to ‘a nuclear blast wave, Dynamic pressure in each opening may be obtained
also, Characteristics of the room, the wave and ambient conditions are
typed by the operator in response to typed questions, Provision 'is made
for a maximum of eight openings and the delays between wave front arrival
at the leading face of the building and each opening must be supplied,
Only three different pressure histories, however, are available for as=-
signment to each opening: the history associated with head-on impact,
and two others which contain only the static pressure behind the front
and a drag force, Three gifferent drag coefficients must be specified,
one for the history associated with head-on impact and one each for the
two remaining histories, In order to relate each opening to one of the
three possible histories a "location code" is specified for each opening.
This code is the number 1 for the head-on history and the numbers 2 and
3 for the remaining two histories.

Duration of reflected pressure ("clearing time") against the wall
struck head-on is not calculated in the program but must be entered by
the operator, Other details of blast history are however calculated ac=-
cording to algorithms based on descriptions given in References 1 and 3. .

The operator may choose certain'features of the presentation of the
program output, He may have outside (or "input") pressure histories at
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he may limit pro=
ynamic) or he may
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ynamic pressure
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- A listing of the computer program appears in Table E-3.

B. Numerical Example

how the foregoing
veral openings & hr
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genoral proc
1 example will

As an jndication of
ied to account for se jef pumerica

re.

modif
be.carried out he
ected to each other by
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o rooms conn
nnected t
The blast wave that
ree field overpressure of 10 !

Consider & volume contained in tw
an open doorway and consider each room €O
single doorway, a8 shown in Figure E-14.

the structure will be characterized by a £
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FIGURE E-14 SKETCH ILLUSTRATING NUMERICAL EXAMPLE

head-on incidence upon the opening to the larger room, and positive phase
duration of 1 sec. Standard ambient conditions will be assumed, i.,e.,

Po = 14.7 psia and Po = 0.076i lb/ftz. In the ffont wall the opening
area is 254ft2

and there is a like opening in the rear wall. Because the
door between the rooms has an area comparable to the area of each of the

outside doors, the presence of the partition will be ignored and the
volume to be filled taken as

3
V3 = 50 x 20 x 8 = 8000 ft

As a first step the pressure histories outside the two doors will
be calculated, according to the procedures recommended by Ref, 1. Since
the first window is struck head-on, there will be no time delay there

and the peak pressure will be the reflected pressure PR which is calculated
as:




P = 2 P . 0
R so 7P + P

o so ( j
Here

P = 10 psi and Po = 14,7 psi, hence

SO

p = 25.3 psi
R p

This reflected pressure will be felt in declining strength for the drras
tion of the clearing time, tc, which is estimated as

3s
t = —
C (¢}

where s is a dimension of the wall undergoing pressure clearing and € is
sound speed. In this case€

1/2 1/2
Ly Po/poj /2 _ [1.4 x 14.7 x 32 % 144/0.076096] /2 _1116 ft/sec

Cc =
and s = 20 : .
0
so that
t = 53.7 ms .
c

As an approximétion the decline of reflected pressure during the interval

ostst
c

is treated as linear, that is, at t = te the pressure Pg on the first wall
is simply the sum of the free field overpressure P c and the drag Pdc
arising from the winds behind the shock front. Since during the time tc

free field pressuré has fallen exponentiallylfrom Pso = 10 psi

t -t /t
c o

E-68




where to is the free field duration of positive overprcssure; in this
case t, = 1 sec so that

P = 8.97 psi
SC .

Pecak drag pressure Pd is computed from the formula
. o

P = 5 5 100 2 21 .
do 2 7P +P 2 7x14.7+ 10 << Pt
o SO
so that drag pressure at t = tc is:l

t \2 .
c -2t /t

P =P 1l - —

de - “do t (2 t7%)

Numerically this is

P =1.,7 i
de 8 psi

Therefore the pressure outside the first opening at t = t is:

P =P + P = 8.97 + 1,78 = 10,75
c sc dc

énd, assuming a linear fall from Py, to P,, for 0 = t < t,, pressure P,

- outside first wall as a function of time becomes:

68
1 (68)

gtc - t)
Pp =P t_ (PR - Pc)

For the remainder of the positive phase duration outéide pressure at
the first opening is simply the sum of the decayed side-on pressure

t\ =t/t
P =P 1 -—\e / o (69)
s sO | W,

o

and decayed dynamic pressure

E-69
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t \2 =2t/t
P =P 1 = T e o (70)

O

P =P + P (71)

For the first wall a drag coefficient equal to + 1.0 has been tacitly
assumed above but for the second opening this coefficient will be different
from 1, and according to Ref, 1, a value of -0.4 may be assumed., At the
rear opening there is no reflected pressure and the delay is equal to the
tlme taken by the front to traverse the building (assuming that the open=-
ing is already open upon blast arrival or that it is immediately forced
open by the blast). Blast front speed can be found from the formula

p -P |1/2
vy + 1 SO )

where co = sound speed in ambient air, i.e.,

. 1/2
c = | yP_ 32x 144/p = 1116 ft/sec
o o o
Hence
) 9.4 10 1/2
U= 1116 x 1 4 — x —— = 1148 ft/sec
.8 14,7

50
so that delay at the rear entrance is IIZg = 43.5 ms

'Beginning at t = 43.5 ms the .room starts to fi11l through the rear opening.

(outflow through openings other than the first can ordinarily be neglected
during the delay period: either the other openings are closed to the blast
for a certain period or, if not, the blast travel time to them is much
shorter than the time requlred to start outflow through them.) Filling
through the rear opening takes place however from a reservoir at lower
pressure than that outside the front opening, i.e., outside pressure Plr

at the rear is:

P =P =-0.,4P (72)




The decline in pso and Pdo which occurs while the blast front travels

from front to rear opening is negligibly small and may be safely neglected
for buildings of ordinary size,

For this sample casec, the quantities Py (pressure outside the front

opening) and Plr (pressure outside the rear opening) have been calculated
as functions of time and plotted in Figure E-15. The figure shows the
discontinuity in the derivative of Py with respect to time st the o004
(e, PC) when the reflected pressure is assumed to disappecar and the out-—
sidec pressurc takes on its quasi-steady value,

Also plotted in the figure arc inside pressure histories P4 calculated
by two methods: the greatly simplificed procedure given in section II-A
of this report and tho step-by~step method F explained in Scction I11-B.
' According to the first of these two procedures the estimated history is
given by the line segments ODFG obtained as follows. When the blast ar-
rives at the front opening, filling immediately begins along line 0OA,

where point A is the intersection of the outside pressure history and the
abscissa

\4
_ _3 _ 8000
- 2A1 T2 x 25

= 160 ms

Line BC is a similar line representing filling through the rear opening,

beginning after the delay time of 43.5 ms. Ordinates under the line BC

have been added to ordinates of OA to produce the line DE, Since areas

of both openings are equal, the point F is placed halfway between current

outside pressures outside the front and rear openings and the decline of
"'Pg represented schematically by thé line FG,

The step-by-step calculation results in the curve labelled "Method F"
in Figure 15, Because of the high reflected pressure during the interval
0 =t < tc (which does not influence the results of the simplified method
in this example) the more careful calculation shows a faster build-up of

room pressure than the line ODF. To demonstrate the method the first'step
of the stepwise solution will be calculated below,

Since the least sound transit time across the room is approximately
20 ms we will choose a value of At = 5 ms. At t = O there is only one
opening, that in the front wall. Outside pressure there at that time is
Pr 25.3 psig. Inside pressure P

é = Po = 14,7 psia and density is
pé = p, = 0.076096 1b/1t3,

[}
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10,

11,

12,

P =25.3 + 14.7 = 40.0 psia

b 1/vy
— = | 20.0 11714 (0 076096)' 0.156 1b/f :
p1= P p = 14.7 . = L1506 1h/f1

P, =0.1912 P = (0.1912) (40.0) = 7.65 psia
P, 1/y g
o, = | — p. = (0.307) + (0.156) = 0,04785 1b/ft
2 P 1
1
P P ' 2
2 2 1 2 2.8 40.0 7.65 6 ft
==X == - 32 x 144 = 3.11 x 10
2 y-1lp, b, 0.4]90.156  0.04785 sec2
1 u2 7.45 104 1b/ft (dynanmic pressure at front ing)
= - = o X essur a Iro openin
9172 Py ecz W P pening

Since Pl > P;: u2 >0, i.e., flow is inward. Were P’ > P , u2 would

be negative

= A t = 0.0105 1b
bngy = Uy Py Ay A 0
p bm
40, .0105
= 1 CLE é 2 0)(0.0105) | 144 - 1360 £t 1b
(32———> P1 ==  (0.156) ‘
Y 1.4

Since the rear opening is closed at this time:

= = 0
gy = Moy

Were the second opening available, steps 1 - 9 would be repeated
using initial outside pressure at rear opening to calculate Am3

and Aw 2
32
= = 0,01 1
Am3 A@Sl + Am32 0,0105 1b
W= = 13 f
A 3 Aw31 + Ay32 60 ft 1b
E-73
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;  (y=1)  Awj (0.4) (1360)

13, P =P  + = 14.7 ———e = 14,7 5
3 3 7 + 2000 68 psia (room
pressure) ' ' (
Am
14 e 5! 4 — = 0.076096 0.0105 _ 4.0760973 lb/ft3 (air densit
.opg = 93 V3 =0, + so00 - O air density
in room)

15. sSet P/ equal to P
g CANAS O Ty
and pé equal to p3 and return to step 1 with value of

P1 at t = At = 5 ms,

V. Edge Diffraction of an Acoustic Wave

A weak planar shock striking a semi-infinite wall head-on cén be
treated approximately as a seif-similar acoustic wave in the manner demon=
strated by Ludloff.!® Such treatment is two-dimensional and neglects the
presence of floor and ceiling.

In the acoustic approximation all disturbances or effects are propa=
gated with sound speed. Thus after the incoming wave front strikes the
semi-infinite wall, the influence of the edge will be felt only within a \ﬁ
cylinder whose axis is the edge and whose radius is

ct -

where ¢ is'sound speed and t is/elapsed time after initial impact.

" If a cartesian coordinate system is placed so that the edge becomes the

z-axis and the negative y=axis lies in the wall the location of the circle
of disturbance due to the wall is

and the equation satisfied by the overpressure p is

azp azp 1 azp
2t 2" 2 2 (73)
X oY ¢ ot

I1f a change of variables is made:




w i<

Yoo X : =¥ _1
M= o'—ct, and tan 0 = —c; (74)

then in the new coordinates (1), o, ©) the disturbance is confiner te s
circle of unit radius, If, further, radii arc changed in scale aceording,
to the formula:

p = (75)
1+q - r2)1/2

. . 2 2 2
where p is the new radius and r = n +o, then the equation satisfied

by p in the cylindrical polar coordinates (p, 8) can be written

2
ol ap 3 p
PPt 5=0 (76)
3p ap) 567

This is Laplace's equation and is satisfied by the imaginary component of
any analytic function of the complex variable,

C=pe
In the case of edge-diffraction of a weak shock the present method yields
a solution for 0 < r <1 (or 0 £ p £1). The angle € lies in the range

3m
- g to —, as illustrated in Figure E~16, The origin of coordinates is

labelled O.

The boundary conditions are determined by physical considerations.

: Because the acoustic Eq. (73) or (76) is linear in p, the incident over-
" pressure may be taken as unity and the pressure reflected from the wall,

as 2, The overpressure in the undisturbed air is of course zero. These
conditions imply the following pressure values on the circumference of the

circle of disturbance

T

—-—Seso =0

> p

0<0=sm p=1 77)
3

TTSGS-—; p=2

The areas of uniform pressure are marked in Figure E-16,.
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FIGURE E-16 BOUNDARY CONDITIONS ON CIRCLE OF INFLUENCE

Potential theory guarantees that there is only one pressure distribution -
within the unit circle which satisfies Eq. (76) and meets the foregoing
boundary conditions. Solution of Eq. (76) will be guaranteed by the fact
that the distribution function is analytic,

A further transformation of variable will make the exposition of the
correct distribution function clear. Let

w o= (i(;)l/2 = Reié (78)
where R = p1/2 and & =<—123,+ 6>%

In the w-plane the unit circle of disturbance becomes a semicircle of

radius 1; the back side of the wall lies along the line & = O while the

front side falls along & = m. The line 0 0 in the {-plane rotates to
)

i .
$ = 4 and the line © = 7 as found along @ = %g. Thus in the w-plane the
boundary conditions on the semicircle R = 1 become
)
E-76 i;




p=0 0<d <
ﬁ T 3
i k)
=1 J<p ST
P 7 == ' ()
| 37
P =2 '—4— <9 <7

Any analytic function of w will also be an analytic function of ¢,

N ]

i .
The function w - e is represented by the line BA in Figure g-17
and its argument by the angle . When A falls on thie unit circle, ¢ in=-

T 3m
creases discontinuously from - Z tg f; as A moves counter clockwise through
. B4

i
the point B. The function w = e ~ 4 is continuous within and on the upper
semicircle DBE, Furthermore the included angle v is

Y=o+ B
. L OTT
where Arg | w - e = = and Arg |w ~ e = B. But along the arc
T
EB, v = 2 Hence the function
W 51T
)
1 W - e
f = = Arg L
1 n LT 2
i—
4
w=-e

is zero along EB and 1 along BD.

By a similar argument based on Figure E-18 it is clear that the

function
AT
ary
? 1 A w - e i
- - r - —
2 & 30| 2
4

is zero along the arc EB/ and 1 along B’D.

I | E~77
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Thus the sum

kit A
i=— i—
1 w : e 1 4
f +f == { Arg . -
1 2 . ik 34 i (80)
i- i
4 4
w =~ e w-e

meets the required boundary conditions along the scmicircle EBD in the
w-plane. But '

51 7T
ie— i—
1 w e 4 w e 4
Fw) = ; 1n - . 3 - i
i- i
: 4 4q
W =-e w - e

is analytic in w and z and since fl + f2 in Eq. (80) is evidently the -
imaginary part of F(w), Eq. (80) provides the sought-for expression giving
the pressurce distribution within and on the circle of disturbance p=R=1,

Eq. (80) can be written as

R sin & ! R sin & 1
S1 —~ sin ' -
‘ -1 T B -1 TR
p = tan 1 + tan 1
R cos & - R cos & - -
2 A2
R sin & - R sin & :
si - - -
- ’\/2 - sin ¢ )\/5
- tan T |- tan T ]-7 (81)
R cos & - -~ R cos & - .
where
1/2 r 1/2
R=p = 2 1/2
1+ (@1 =~-1x)
and
m S
== 4 =
273

The denominators of the four arctangents in (81) have real roots in the
range 0 < ¢ < Tmwhen p 2 1/2; and care must be taken to evaluate the in-
verse functions in such a way that p is continuous within the unit circle.

1
There are no zeros in the denominators when p < 5 .
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- 1
If R cos 91 + VQ = 0 and
R 3 : 0 i
cos - ==
: 2 /2
31
then — = <
o " 3 1 m
i
and 0 < g -
éz 4

If the FORTRAN algorithm'is used to evaluate the arctangent terms in (81)
then for ‘ ‘

1
> d R >
% @2 an v@

the second tern,

1
R sin & + -
- J2
tan
R cos & z
2
. ’ {r
may be increased by T, and the third term t,
1
R sin - -
o PP
an
R cos 9 1
S - o
A2

must be decreased by 7, or the sum in (81) increased by 21, When
1
3 >‘§1 and R > 45 we must add another 27 to keep the expression for p
continuous and insure the existence of its derivatives.
In order to assure continuity with respect to radius the foregoing
choices limit the arctangents to certain quadrants where radius R is such

1
that no zeros in the denominators exist, i.e., when R < 2" Thus, since
we have chosen to add T to

R sin & + =
sSin -
T2

tan

R cos & ~ V%
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. 1 .
for & > éz‘and R > 5, we must, when using the FORTRAN algorithm, add

—
[KI

pa——

‘ . 1
. (t> to the same inverse tangent for all & when R < 5 in order to place the
} Ty

angle computed in the second quadrant, Similarly, by subtraciing = 7r.u

Rt

R sin & L
n - -
-1 ,\/2

R cos & = -~

A2

tan

. : 1
when & > §2 and R > E we are placing the arctangent in the range = g to

‘ 1
- 7i; hence the same function, when R < =, must be computed in the same

range by subtracting m from the angle as computed by FORTAN., When R < —
the denominator

R cos & +

1
J

1
is always positive and when R < — the FORTRAN choices of quadrant for the two
arctangents containing it are consistent with those for R > —,

Pressure contours, located as outlined above, are shown in Figure E-19,

1-81
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FIGURE E-19 PRESSURE CONTOURS WITHIN CIRCLE OF DISTURBANCE
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NOTATION*

area of opening or openings through which room fills

constant equal to various functions of Y, appearing in
Equation (5)

constant equal to various functions of v and/or of interior
and exterior conditions, appearing in Equation (5)

speed of sound in air

specific heat at constant volume for air

- numerical factor for consistency of units

integral

discharge coefficient

distance along jet axis measured from opening

mass pf air

increment of air mass corresponding to time increment At
air pressure

air pressure during immeqiately preceding time step

peak overpressure outside front or first wall

total overpressure outside rear wall

sum of dynamic and side-on air pressure at tiﬁo.t= te

frce~field dynamic pressure

*

Numerical subscripts may be used with variables to refer to a
particular space or volume; see Preface.
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t wall struck
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‘c pressur
e Ref., 5,

ng air

od from axis

-ompute clearin.

between firs:
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arrival of

ast wave at time t= t.

‘last wave

1 at one cross section

.2l of blast and

a1l structure

duration of positive side-on overpressure
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At

188

u*

av

increment of time

Blast (ot spoed

particle speed of air

air particle speed along jet axis

volume of room or other space to be filled

increment of air volume

speed of object in air stream

Cartesian coordinate

Cartesian coordinate

unknown variable in Equation (5)
a specific solution of Equation (5,

complex vatriable_RefLQ

energy increment

angle in complex w~plane

a certain function of y

i.e., y, = 0,1912

acceleration coefficient of object in air stream

angle in complex w=plane

ratio of specific heat at constant pressurc to specific heat

at constant volume

angle in complex w~plane

correction term applied to momentum balance associated with

one control surface

complex variable p ei®
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P —————————————
e " - e ; - - T
1 time in<vopendent coordinatc, ©.C., M= y/ct

<] angle b. tween inward normal .- surface and the positive direction
of the x-axis
e angular coordinate, i.e., tan = y/%
p density of air
p reduced radial coordinate
. | p'v "air density auring immediately preceding time step
o ambient air density
g time independent coordinate, i.e., 0 = x/ct
T time required to transmit a sound signal over the longest room
' dimension
© angle in complex w-planec
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